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Abstract  The retrospective analysis of a large database 
on wheat variety testing in New South Wales (NSW) is 
considered. This analysis involved three key steps. In- 
itially error variance heterogeneity is modelled, indica- 
ting significant differences in error variance due to trial 
location, year of trialling, sowing date and trial mean 
yield. The implication of this modelling for the estima- 
tion of variance components is discussed. 

Key words Genotype-by-environment interaction �9 
Variance heterogeneity 

Introduction 

The accurate assessment of the yield performance of new 
genotypes across a range of environments is crucial for 
plant improvement programmes. The cost of this evalu- 
ation is significant. New South Wales (NSW) Agricul- 
ture spends approximately $750,000 annually on wheat 
variety testing. Every year in southern and central 
NSW, there are over 100 wheat variety trials sown and 
harvested to assess the performance of new genotypes 
across a range of environments. Brennan (1988) has 
shown that the cost of sowing a single plot is $20. The 
optimum numbers of years, locations and replications 
per trial for testing new genotypes in NSW could either 
be determined from an economic or statistical view- 
point. That is, the numbers of years, locations and 
replications can be chosen so that the probability of 
releasing an inferior genotype (known as a type I error) 
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can be chosen to be small. Alternatively, we can specify 
that the probability of releasing a superior genotype be 
large. That is, it may be preferable to set the number of 
years, locations and replicates per trial and the release 
criteria so that the probability is always high for any 
superior genotype to be accepted rather than protect 
against falsely releasing an inferior genotype. The econ- 
omic cost to farmers of releasing an inferior genotype is 
much less than the economic cost of not releasing a 
superior genotype. 

Whatever the strategy, it is necessary to determine 
the relative magnitude of the sources of variation in the 
NSW wheat trialling system. The components of vari- 
ance which control the above decisions are due to 
genotype and the interaction of genotype with year, 
location and year and location. Once these components 
have been estimated, the efficiency (either statistical or 
economic) of various trialling systems can be deter- 
mined. 

There is a substantial amount of literature on geno- 
type-by-environment interactions in Australia. Various 
approaches have been recommended for the analysis of 
such data dating back to the seminal work of Finlay and 
Wilkinson (1963) who proposed joint regression analy- 
sis. More recently, pattern analysis (Byth et al. 1976; 
Brennan and Byth 1979; Brennan and Shepherd 1985) 
and the additive main effects and multiplicative interac- 
tion (AMMI) model (Gollob 1968; Gauch 1988) have 
been recommended. The choice of the method of analy- 
sis depends on the aims of the study (Williams et al. 1992). 

Most studies of variance component estimation in 
genotype-by-environment data have been restricted to 
either a smaller number of years (Gauch 1988; Thomson 
and Cunningham 1979; Nachit etal. 1992), locations 
(Mungomery et al. 1974) or genotypes (Self et al. 1979; 
Zobel etal. 1988; Brandle and McVetty 1988)i Many 
authors have dealt with reduced data sets for computa- 
tional ease (Brennan and Byth 1979; Brennan et al. 
1981), but the availability of software coinciding with 
the development of REML (Patterson and Thompson 
1971) and the recent development of a new computer 
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efficient algorithm for REML (Gilmour et al. 1996) has 
relieved these restrictions. 

Patterson et al. (1977) presented the results of a simi- 
lar study for several crops in the United Kingdom (UK), 
and Talbot (1984) updated these results and presented 
results for other crops not included in the original work 
of Patterson et al. These studies were conducted in the 
UK and cannot be reliably used to assess the effective- 
ness of trialling systems in NSW. 

In this series of two papers (see also following article) 
we present the retrospective analysis of a large database 
of trials from 1982 to 1991 inclusive. The aim of this 
work is primarily to estimate the variance components 
due to genotype and the interaction of genotype with 
location, year and location by year. The structure of the 
papers broadly follows the sequence of analyses as they 
were undertaken. This paper reports on the modelling of 
within-trial error variance. The number of trials in the 
database and the length of the trialling period meant 
that a more statistically sound method of coping with 
error variance heterogeneity was possible. This 
modelling of error variance is crucial to the subsequent 
estimation of variance components, which is the subject 
of the second paper in this series. The second paper 
initially addresses the partitioning of genotype-by-envi- 
ronment interaction into explainable and unexplainable 
interactions. This partitioning is seen as sensible and 
necessary in order to obtain estimates of variance com- 
ponents that only reflect the unexplainable interactions 
of genotype with year and location. The second paper 
concludes with a comparison of the statistical efficiency 
of various trialling systems. 

Description of the database 

Wheat yield data from the trialling system for the years 
1982-1991 inclusive were collated. This data represen- 
ted experiments conducted in silo groups 3, 4, 5 and 6 in 
central and southern NSW. In all, there were 1071 
experiments. For each experiment, the sowing date 
(measured in Julian days, 1 = 1 April), mean yield (y), 
coefficient of variation of the yield (CV), average stan- 
dard error of a difference between genotype means (sed), 
error degrees of freedom (v) and number of replicates (r) 
were recorded. 

Table I Summary of experiment statistics for the NSW wheat 
database 

Variable Minimum Maximum Mean Median 

Sowing date 1 April 29 August 23 May 22 May 
Yield(t ha-  1) 0.12 8.02 3.03 2.98 
Replicates 2 12 3.4 3 
CV(%) 1.88 71.7 10.3 8.5 
Error df 10 165 40 34 
Entries/experiment 5 78 19 17 

Table 1 presents a summary of this data. Sowing 
dates ranged from 1 April to late-August, and the experi- 
ment mean yield ranged from 0.12t ha -1 to 8.02 
t ha -  1. Most experiments had three replicates though 
data were included from some early generation experi- 
ments in which check plot replication can exceed ten. 
The CV varied substantially, being particularly high for 
the low-yielding experiments conducted in 1982, a year 
of severe drought. 

Two measures of accuracy were available for each 
experiment, the sed and CV from which the error vari- 
ance for the ith experiment, denoted by s~, can be 
calculated using the usual formula for either a ran- 
domized block analysis or incomplete block or by an 
approximation for spatial analysis. These two estimates 
of si z were compared and remedial action taken if they 
differed by more than 1% (allowing for rounding errors). 
The range of s 2 was (0.000805, 0.903) with a mean of 
0.08715 and median value of 0.0569. 

The experiments were conducted across a wide range 
of sites from the high rainfall eastern boundary of the 
wheat belt (Bathurst, Molong, Orange) to sites on the 
marginal western edge of the wheat belt (Condobolin, 
Trangie, Bogan Gate). To identify key environments, we 
grouped these experiments into 60 locations, as shown 
in Fig. 1. Table 2 presents the number of experiments 
conducted at each location for each year. Often, two 
experiments were conducted at the same location in the 
same year (early and late sowing dates). Experiments 
were conducted either on cooperating farms or on NSW 
Agriculture research stations. In some cases experiment 
sites were chosen to represent a particular environment- 
al condition, for example, soil acidity. 

Experiment designs varied considerably from ran- 
domized complete blocks to incomplete block designs 
and more recently NN-balanced designs (Wilkinson 
etal. 1983). Methods of analysis varied from ran- 
domized block and incomplete block analysis for most 
experiments up to 1986, thence the spatial analysis 
procedures of Gleeson and Cullis (1987) from 1987 to 
1989. The extended spatial analysis of Cullis and 

Fig. 1 Map of NSW indicating the 60 locations 
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Table 2 Frequency of experiments classified by location and year 

Number  Location Name Year 

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 

Margin 

1 Wagga Wagga 9 5 5 6 5 6 1 2 2 1 42 
2 Temora 6 4 3 3 3 3 2 1 2 1 28 
3 Yanco 2 3 4 3 2 1 1 2 2 1 21 
4 Condobolin 5 4 3 3 4 3 2 2 2 4 32 
5 Cowra 1 2 0 2 2 2 2 2 3 2 18 
6 Moombooldool  2 2 2 2 2 2 2 2 2 2 20 
7 Beckom 2 2 2 2 2 2 2 2 2 2 20 
8 Coleambally 2 2 1 1 1 0 0 0 0 1 8 
9 Murrumbidgee 4 5 2 5 1 1 0 0 3 3 24 

10 Trangie 3 4 2 2 2 2 2 1 1 1 20 
11 Ariah Park  1 2 2 2 1 2 1 2 2 2 17 
12 Barmedman 2 3 2 3 2 0 1 0 2 2 17 
13 Blighty 2 2 1 2 2 0 0 1 2 2 14 
14 Bogan Gate 1 1 2 3 0 2 1 1 1 1 13 
15 Canowindra 2 2 2 4 1 2 3 1 1 1 19 
16 Molong 1 3 1 2 0 0 2 2 3 2 16 
17 Coolah 1 3 1 1 1 1 1 1 1 0 11 
18 Cootamundra  2 2 2 1 1 2 2 2 2 2 18 
19 Morundah  2 2 2 2 0 0 3 3 4 2 20 
20 Galong 0 2 1 2 2 1 2 2 2 1 15 
21 Garema 2 6 4 2 4 2 4 1 2 2 29 
22 Gerogery 2 2 2 2 2 2 2 2 2 1 19 
23 Gilgandra 2 1 1 2 2 2 3 2 5 2 22 
24 Goolgowi 2 3 4 3 2 1 0 2 2 2 21 
25 Goonumbla  0 3 3 3 4 2 1 2 2 2 22 
26 Leadville 3 6 3 3 2 3 2 2 1 2 27 
27 Lake Cargelligo 2 2 4 4 3 2 2 2 2 2 25 
28 Lockhart  1 2 2 2 1 2 2 2 3 1 18 
29 Lowesdale 0 2 2 2 0 2 1 2 2 1 14 
30 Mallan 1 1 1 1 1 1 1 1 1 1 10 
31 Mathoura  2 3 3 0 2 2 2 2 2 2 20 
32 Mendooran 2 4 4 5 3 3 3 2 3 0 29 
33 Moulamein 2 1 4 2 2 0 2 2 2 2 19 
34 Mulyandry 1 2 2 2 2 2 2 2 1 2 18 
35 Narromine 0 1 1 1 1 1 1 1 2 0 9 
36 Nyngan 0 4 5 5 0 3 3 0 2 0 22 
37 Oaklands 2 1 3 3 2 1 1 4 2 4 23 
38 Purlewaugh 1 1 2 2 3 3 1 2 1 0 16 
39 Quandialla 0 4 4 4 2 4 2 1 2 2 25 
40 Tomingley 0 2 2 3 1 2 2 2 1 1 16 
41 Tooraweenah 0 1 1 1 1 0 1 1 0 0 6 
42 Tot tenham 0 2 2 2 2 3 2 2 1 2 18 
43 Trundle 1 3 1 1 1 1 1 1 2 1 13 
44 Tullamore 0 1 1 2 2 2 1 0 1 1 11 
45 Warkton  0 1 1 1 1 1 1 0 0 0 6 
46 Warren 2 5 3 4 3 2 3 1 1 1 25 
47 Weethalle 2 3 1 3 1 2 2 2 4 4 24 
48 Wellington 1 5 4 2 0 0 0 1 1 3 17 
49 Wongarbon 1 1 2 2 1 2 1 1 1 1 13 
50 Woodstock 2 2 2 1 0 1 1 1 0 1 11 
51 Collie 0 3 3 2 1 0 0 0 1 1 11 
52 Young 2 0 3 5 0 0 0 1 2 3 16 
53 Cookardinia 2 2 2 2 2 1 2 2 2 2 19 
54 Greenethorpe 0 2 0 1 0 1 0 2 1 2 9 
55 Grenfell 0 1 1 2 0 0 2 1 2 1 10 
56 Eurongilly 2 3 1 2 1 3 1 0 0 0 13 
57 Bathurst  0 1 1 1 1 1 1 1 0 0 7 
58 Tullibigeal 1 2 1 1 0 0 3 3 2 2 15 
59 Cootamundra  2 2 2 1 2 2 2 2 2 2 1 18 
60 Lake Cowal 0 3 3 4 0 0 0 0 1 1 12 

Margin 93 149 130 143 92 94 91 87 103 89 1071 
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Gleeson (1991) was adopted for the analysis of experi- 
ments from 1990. Accompanying these changes in ex- 
periment analysis and design has been a significant 
change in field plot techniques and an improvement in 
awareness of the need for improved error control (Cullis 
and Gleeson 1989) among field workers in NSW 
Agriculture. 

Modelling experiment error variance 

Background 

Variance heterogeneity is a common problem encoun- 
tered in the analysis of a series of experiments (Cochran 
and Cox 1957). Nevertheless, the analysis of genotype- 
by-environment data is often conducted assuming con- 
stant variance (Patterson et al. 1977; Williams et al. 
1992; Brennan etal. 1981). Other workers choose to 
transform to remove the mean-variance dependence. 
Commonly used transformations include logarithmic 
(Finlay and Wilkinson 1963) and square-root (Brennan 
and Shepherd 1985). The ability of a single transform- 
ation to achieve additivity, normality and constant vari- 
ance has been questioned (Carroll and Ruppert 1989); 
however alternate approaches such as the use of quasi- 
likelihood or empirical weighted least-squares have not 
been exploited due to the computational burdens for the 
analysis of heterogeneous mixed models. Recently, 
Foulley et al. (1992) advocated modelling variance he- 
terogeneity in mixed linear models and developed 
REML procedures for variance component estimation. 
It was not possible to adopt their procedures as only 
genotype experiment means, and the associated experi- 
ment standard errors were stored electronically. 

Carroll and Ruppert (1989) present a very thorough 
account of methods for identifying variance heteroge- 
neity in single strata designs. They also present several 
approaches for jointly modelling mean and variance 
parameters. In the context of genotype-by-environment 
data, variance heterogeneity presents serious difficulties. 
The existence of several strata or error terms (namely 
genotype-by-location, genotype-by-year, genotype-by- 
location-by-year and residual) precludes the simple ap- 
plication of the diagnostics discussed by Carroll and 
Ruppert (1989). There are various issues to be addressed 
concerning the homogeneity of the other variance com- 
ponents in the presence of error variance heterogeneity. 
If weights are taken as the reciprocal of the estimated 
variance for each experiment, this immediately implies 
that heritability (the ratio of genetic variance to error 
variance) will be proportional to error variance. It is 
perhaps more appropriate to assume all error terms 
have a common level of heterogeneity. This is equiva- 
lent, asymptotically, to the use of transformations 
or standardization techniques prior to analysis, i.e. as- 
suming constant variance and additivity on a log scale 

implies strict conditions on the type of heterogeneity for 
each error term in the model. 

The idea of modelling variance is not new. Aitken 
(1987) presents an approach to modelling variance using 
GLIM for normal data, and Box and Meyer (1986) 
consider the analysis of dispersion effects in replicated 
designs. Verbyla (1993) extends the ideas of Aitken 
(1987) and demonstrates how REM L estimation is more 
appropriate for the joint estimation of mean and vari- 
ance models. Carroll and Ruppert (1989) point out that 
the use of the sample variance as a weight when there is 
replication at each design point can be disastrous. In 
fact, Carroll and Cline (1988) note that weighted least 
squares is inconsistent for two replicates. Even for ten 
replicates, this approach leads to a variance inflation of 
40% (Yates and Cochran 1938). 

The problem is not as severe for most genotype-by- 
environment data in which replications are pooled with- 
in an experiment to increase the precision of variance 
estimation. For this data, the error degrees of freedom 
varied from 10 to 165 with a mean of 40.0 (Table 1). 
However, the use of only the sample experiment error 
variance as a weight is an equivalent procedure to 
estimating a regression function for the mean by linear 
interpolation (Carroll and Ruppert 1989). 

Results 

The variance model considered was the log-linear form 

loga 2 = z'i2 or a 2 = e ~i;', (1) 

where 2 is a vector of unknown parameters. We assumed 
that the first component of each z~ satisfies zia = 1 so that 
if 22 . . . . .  24 = 0, we had constant variance, af = e xl" 
As pointed out by Aitken (1987) and Smyth (1989), if the 
vector of experiment genotype means is known and we 
assume normality for the data then s~ ~ a2X2(vi) where 
v i is the error degrees of freedom for the ith experiment. 
Thus, maximum likelihood estimation of 2 can proceed 
by application of a generalized linear model with 
Gamma errors and known scale parameter 2v/-~ 
(McCullagh and Nelder 1989). The dependent variable 
was s~ and link function was the log link. 

Factors in these experiments which were likely to 
influence error variance include the year of sowing, (for 
reasons outlined earlier), the experiment mean yield, 
(given such wide variation in mean yield, Table 1) and 
sowing date. Experiments sown earlier in the season are 
often subject to more variability due to difficulties with 
crop establishment and intermittent frosting of spring- 
type genotypes. Additionally, some sites are inherently 
more variable than others. 

Figure 2a,b presents the added variable plots (Atkin- 
son 1985) of log (s~) against log 05~) where Yl is the ith 
experiment mean and log (s 2) against t i where ti is the 
sowing date measured in Julian days from 1 April. The 
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relationship between log (s 2) and log (3%) appeared to be 
linear, suggesting the 'power of the mean model' (as 
discussed by Carroll and Ruppert 1989). 

Figure 2c, d also presents boxplots of error variance 
adjusted for E and log 3% for each year and for each 
location, respectively. These indicate substantial vari- 
ation both within and between years and locations. 

Table 3 presents the analysis of deviance of error 
variance. In this table, terms appearing above the line 
have been adjusted only for other terms above the line, 
whereas terms below the line have been adjusted for all 
other terms in the model. The validity of the choice of the 
Gamma variance was examined by fitting the same 

Table 3 Analysis of deviance of error variance log link, Gamma 
variance function, n = 1071 

Source df Mean deviance Residual mean 
deviance 

log(y) 1 2415 
(t) 1 211 

Year (Y) 9 122 
Location (L) 59 52.4 9.358 

y.Y 9 32.7 
t.Y 9 13.2 
Y.L 453 11.7 6.751 

model (including only the main effects) with log link and 
constant variance using the quasi-likelihood procedures 
of McCullagh and Nelder. Residual diagnostic plots 
supported the use of the Gamma variance function. 
There was evidence of year x log()%) and year x t i effects; 
however, closer inspection of the data revealed a limited 
range of yields and sowing dates in some years (1982 and 
1987), and so we have excluded these interactions. Simi- 
larly, the year-by-location interaction has been excluded 
for reasons of parsimony. 

Tables 4 and 5 present the relative variance of the 
years and locations, respectively. These were adjusted 
for experiment mean and sowing date and although 

Table 4 Predicted experiment 
error variance for 10 years 
relative to 1987 

Year Experiment 
error variance 

1987 1.00 
1991 1.09 
1986 1.40 
1989 1.41 
1988 1.42 
1990 1.43 
1982 1.45 
1985 1.57 
1984 1.96 
1983 2.26 



26 

Table 5 Predicted experiment error variance for 60 locations in NSW relative to Mallan 

Location name Location number Location name Location number 

Mallan 30 1.00 Warkton 45 4.15 
Beckom 7 1.91 Molong 16 4.23 
�9 Temora 2 1.92 Moombooldool 6 4.24 
Greenethorpe 54 2.05 Tullibigeal 58 4.25 
Tottenham 42 2.09 Grenfell 55 4.36 
�9 Yanco 3 2.17 Oaklands 37 4.50 
Trundle 43 2.56 Wongarbon 49 4.51 
Woodstock 50 2.64 Garema 21 4.52 
Collie 51 2.70 Coolah 17 4.57 
Weethalle 47 2.71 Nyngan 36 4.61 
Tooraweenah 41 2.79 Cootamundra 2 59 4.66 
Young 52 2.90 Murrumbidgee 9 4.66 
Narromine 35 3.03 Bogan Gate 14 4.67 
Lockhart 28 3.16 Bathurst 57 4.80 
Mathoura 31 3.16 Lake Cargelligo 27 4.80 
Gilgandra 23 3.17 Purlewaugh 38 4.83 
�9 Wagga Wagga 1 3.24 Coleambally 8 4.83 
Leadville 26 3.25 �9 Cowra 5 4.88 
Morundah 19 3.25 Eurongilly 56 5.53 
Goolgowi 24 3.26 Wellington 48 5.56 
�9 Condobolin 4 3.36 Lowesdale 29 5.67 
Tomingley 40 3.37 Gerogery 22 5.85 
Mulyandry 34 3.61 Lake Cowal 60 5.85 
Tullamore 44 3.72 Moulamein 33 6.21 
Ariah Park 11 3.85 �9 Trangie 10 6.91 
Canowindra 15 3.91 Blighty 13 7.02 
Quandialla 39 4.00 Cootamundra 18 7.20 
Goonumbla 25 4.09 Galong 20 7.46 
Mendooran 32 4.11 Barmedman 12 9.38 
Warren 46 4.13 Cookardinia 53 10.10 

�9 = NSW Agriculture Research Station 

mean sowing date and yield were affected by location 
and year, the range of yield and sowing date for each 
year and location was suff• to cover the overall 
mean yield and sowing date. The most variable loca- 
tions included locations chosen for soil acidity and the 
western low-yielding locations. Error variance has de- 
clined (though not consistently) over the 10-year period. 

Discussion 

This analysis not only provides insight into those factors 
affecting error variance, but potentially provides for an 
improved weight for the variance component estimation 
in the next stage of the analysis of the NSW wheat 
variety database described in the second paper in this 
series. With a 1000-fold range in error variance, it was 
clear that an unweighted analysis would be statistically 
inefficient. Much of the heterogeneity was attributable 
to the variation in mean yield (Fig. 2 and Table 3). 
However, there was significant heterogeneity between 
locations (10-fold) and years (3-fold) that warranted 
their inclusion in the model for error variance. 

There are several options available for the choice of 
weight in the subsequent analyses. The most popular 
and simplest option is to use the number of replications 
in the experiment (ri) as the weight. This was clearly 

inappropriate. Alternatively, we could have used the 
observed variance and weighted by ri/s 2. This option 
had several disadvantages. Firstly, given the widely 
differing sources of the data, the chance of data errors 
and outliers being present was reasonably high. Several 
investigations of experiments with excessively low or 
high error variances uncovered errors of transcription 
and coding. Despite utmost care being taken in data 
collation it seemed unwise to condition subsequent 
analyses on the observed error variance. 

Given the strong relationship between error variance 
and experiment mean yield, another option would have 
been to transform and use the experiment replication as 
the weight. The power transformation of yO. 592 removes 
the mean-variance dependence for this data. Although 
this transformation should have been performed on the 
original data, there would only be a small loss of effi- 
ciency by applying the transformation to the genotype 
experiment means as the genetic variance for each ex- 
periment usually was much larger than the error vari- 
ance. This then assumed that models used in subsequent 
analyses were additive on this scale and that additional 
random effects such as genotype-by-year and genotype- 
by-location interactions were homogeneous on this 
scale. 

A third alternative was to weight by wi = rig2/g~ 
where g2 is the pooled experiment error variance and g] 
is the predicted error variance for experiment i, using 
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our model. This option is appealing as it attempts to 
accommodate the major sources of heterogeneity, viz 
scale, year and location, without conditioning the subse- 
quent analyses on the observed error variances nor does 
it assume additivity or homogeneity for the additional 
random effects on another scale. 
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